首页 > 资讯 > > 内容

50道小学五年级奥数题(有答案,行程问题)_天天热议

发表时间:2023-05-22 05:40:49 来源:腾赚网

小学五年级奥数题--行程问题


(相关资料图)

1、客货两车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度前进,到达对方站后立即返回,两车再次相遇时客车比货车多行了216千米。甲乙两站相距多少千米?

答案:1224千米。

2、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路。某人骑自行车从甲地到达乙地后沿原路返回,去时用了4小时12分,返回用了3小时48分。已知自行车上坡是每小时行10千米,求自行车下坡每小时行多少千米?

答案:下坡每小时行15千米。

3、南北两镇之间全是山路,某人上山每小时走2千米,下山时每小时走5千米,从南镇到北镇要走38小时,从北镇到南镇要走32小时,两镇之间的路程是多少千米?从南镇到北镇的上山路和下山路各是多少千米?

答案:下山路为40千米,上山路为60千米 。

4、甲每小时行12千米,乙每小时行8千米某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时求东西两村的距离

甲乙的路程是一样的,时间甲少5小时,设甲用t小时

可以得到

1 12t=8(t+5)

t=10

所以距离=120千米

5、小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?

2808-2208=480

这时候如果小明是第一次追上的话就是这样多

这时候小明多跑一圈

6、某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达返回时,先骑21小时自行车,再骑8小时摩托车也正好到达从甲地到乙地如果全骑摩托车需要多少时间

摩托车的速度是xkm/h,自行车速是ykm/h 。

21y+8x=12x+9y

4x=12y

x=3y

所以摩托车共需12+9/3=15小时

7、有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米两车同向而行,从第一列车追及第二列车到两车离开需要几秒

设从第一列车追及第二列车到两列车离开需要x秒,列方程得:

102+120+17 x =20 x

x =74

8、某人步行的速度为每秒2米一列火车从后面开来,超过他用了10秒已知火车长90米求火车的速度

设列车的速度是每秒x米,列方程得

10 x =90+2×10

x =11

9、现有两列火车同时同方向齐头行进,行12秒后快车超过慢车快车每秒行18米,慢车每秒行10米如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长

快车长:18×12-10×12=96(米)

慢车长:18×9-10×9=72(米)

10、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒这列火车的速度和车身长各是多少

(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)

(2)车身长是:13×30-310=80(米)

11、小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒已知两电线杆之间的距离是100米你能帮助小英和小敏算出火车的全长和时速吗

(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)

(2)车身长是:20×15=300(米)

12、一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒求这列火车的速度与车身长各是多少米?

设火车车身长x米根据题意,得

(530+X )÷40=(380+X )÷30

X=70

(530+X )÷40=600÷40=15(米/秒)

13、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟

从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+160)÷(15+20)=8(秒)

14、某人步行的速度为每秒钟2米一列火车从后面开来,越过他用了10秒钟已知火车的长为90米,求列车的速度

列车越过人时,它们的路程差就是列车长将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差这速度差加上人的步行速度就是列车的速度

90÷10+2=9+2=11(米)

15、快车长182米,每秒行20米,慢车长1034米,每秒行18米两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间

1034÷(20-18)=91(秒)

16、快车长182米,每秒行20米,慢车长1034米,每秒行18米两车同向并行,当两车车头齐时,快车几秒可越过慢车

182÷(20-18)=91(秒)

17、一人以每分钟120米的速度沿铁路边跑步一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度

288÷8-120÷60=36-2=34(米/秒)

18、一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间

(600+200)÷10=80(秒)

19、小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?

两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。

20、甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?

如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。

21、客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?

当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=495(小时)

22、甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?

开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。

23、甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了15千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?

慢车行了15千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为15+1=25(千米)。快车每行1千米比慢车多25÷10=025(千米)。

24、甲、乙两班进行越野行军比赛,甲班以45千米/时的速度走了路程的一半,又以55千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以45千米/时的速度行进,另一半时间以55千米/时的速度行进。问:甲、乙两班谁将获胜?

快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

25、轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

26、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

(52+70)×18=2196(米)。

27、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

28、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

29、 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的15倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+15)=44(时)=4时24分,所以相遇时刻是9∶24。

30、 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11

31、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

甲乙速度差为10/5=2

速度比为(4+2):4=6:4

所以甲每秒跑6米,乙每秒跑4米。

32、一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?

狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

33、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:

(1)火车速度是甲的速度的几倍?

(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?

(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;

(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

34、长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?

800千米

35、客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进在双轨铁路上,相遇时从车头相遇到车尾相离需几秒

10秒

———————————————答 案——————————————————————

一、填空题

120米

102米

17x米

20x米

1 这题是“两列车”的追及问题在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头画线段图如下:

设从第一列车追及第二列车到两列车离开需要x秒,列方程得:

102+120+17 x =20 x

x =74

2 画段图如下:

90米

10x

设列车的速度是每秒x米,列方程得

10 x =90+2×10

x =11

快车

慢车

快车

慢车

3 (1)车头相齐,同时同方向行进,画线段图如下:

则快车长:18×12-10×12=96(米)

(2)车尾相齐,同时同方向行进,画线段图如下:

快车

慢车

快车

慢车

则慢车长:18×9-10×9=72(米)

4 (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)

(2)车身长是:13×30-310=80(米)

5 (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)

(2)车身长是:20×15=300(米)

6 设火车车身长x米,车身长y米根据题意,得

①②

解得

7 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米根据题意,列方程组,得

①②

①-②,得:

火车离开乙后两人相遇时间为:

(秒) (分)

8 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒)

9 这样想:列车越过人时,它们的路程差就是列车长将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差这速度差加上人的步行速度就是列车的速度

90÷10+2=9+2=11(米)

答:列车的速度是每秒种11米

10 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系由于本问题较难,故分步详解如下:

①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:

(i)火车开过甲身边用8秒钟,这个过程为追及问题:

故 ; (1)

(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:

故 (2)

由(1)、(2)可得: ,

所以,

②火车头遇到甲处与火车遇到乙处之间的距离是:

③求火车头遇到乙时甲、乙二人之间的距离

火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:

④求甲、乙二人过几分钟相遇

(秒) (分钟)

答:再过 分钟甲乙二人相遇

二、解答题

11 1034÷(20-18)=91(秒)

12 182÷(20-18)=91(秒)

13 288÷8-120÷60=36-2=34(米/秒)

答:列车的速度是每秒34米

14 (600+200)÷10=80(秒)

答:从车头进入隧道到车尾离开隧道共需80秒

平均数问题

1 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分政治、数学两科的平均分是915分语文、英语两科的平均分是84分政治、英语两科的平均分是86分,而且英语比语文多10分问蔡琛这次考试的各科成绩应是多少分?

2 甲乙两块棉田,平均亩产籽棉185斤甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?

3 已知八个连续奇数的和是144,求这八个连续奇数。

4 甲种糖每千克88元,乙种糖每千克72元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为82元?

5 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59问这五只羊各重多少千克?

等差数列

1、下面是按规律排列的一串数,问其中的第1995项是多少?

解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984

2、在从1开始的自然数中,第100个不能被3除尽的数是多少?

解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149

3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?

解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。

4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?

解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:

34×29+29=35×29

34×30+30=35×30

34×31+31=35×31

34×32+32=35×32

34×33+33=35×33

以上数的和为35×(29+30+31+32+33)=5425

5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张**的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张**卡片,已知这两张红色的卡片上写的数分别是19和97,求那张**卡片上所写的数。

解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。

6、下面的各算式是按规律排列的:

1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?

解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。

7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?

解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。

8、有19个算式:

那么第19个等式左、右两边的结果是多少?

解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。

9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?

解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。

11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?

解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出230=60人。

12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?

解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。

13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?

解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫�敲戳个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。

14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?

解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。

周期问题

基础练习

1、(1)○△□□○△□□○△□□……第20个图形是(□)。

(2) 第39个棋子是(黑子)。

2、 小雨练习书法,她把“我爱伟大的祖国”这句话依次反复书写,第60个字应写(大)。

3、 二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。

4、 有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。

5、 有同样大小的红、白、黑三种珠子共100个,按照3红2白1黑的要求不断地排下去。

……

(1)第52个是(白)珠。

(2)前52个珠子共有(17)个白珠。

6、甲问乙:今天是星期五,再过30天是星期(日)。

乙问甲:假如16日是星期一,这个月的31日是星期(二)。

2006年的5月1日是星期一,那么这个月的28日是星期(日)。

※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗(37÷4=9…1 第一个拿牌的人一定抓到“大王”,)

答案

1、(1)□。

(2)黑子。

2、大。

3、男同学。

4、第20个数字是(3),这20个数的和是(58)。

5、

(1)第52个是(白)珠。

(2)前52个珠子共有(17)个白珠。

6、(日)。(二)。(日)。

※ (37÷4=9…1 第一个拿牌的人一定抓到“大王”,)

提高练习

1、(1)○△□□○△□□○△□□……第20个图形是(□)。

(2)○□◎○□◎○□◎○…… 第25个图形是(○)。

2、运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是(绿旗)。

3、“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是(爱)。

4、(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。

5、有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。

6、甲问乙:今天是星期五,再过30天是星期(日)。

乙问甲:假如16日是星期一,这个月的31日是星期(二)。

2006年的5月1日是星期一,那么这个月的28日是星期(日)。

※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗

※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)

答案

1、(1)□。

(2)○。

2、绿旗。

3、爱。

4、(1)男同学。

5、第20个数字是(3),这20个数的和是(58)。

6、(日)。(二)。(日)。

※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)

海底两万里 选择10道 填空30 带答案 谢谢

9 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

解: 718-619=126-114=12

619-520=114-100=14

去掉的两个数是12和14它们的乘积是1214=168

10 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

解:28×3+33×5-30×7=39。

11 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

13 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

解:每20天去9次,9÷20×7=315(次)。

14 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)

所以甲乙丙的平均数是(26+7)/3=11(份)

因此甲乙丙三数的平均数与甲数之比是11:7。

15 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了

74×6-70×5=94(个)。

16 甲、乙两班进行越野行军比赛,甲班以45千米/时的速度走了路程的一半,又以55千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以45千米/时的速度行进,另一半时间以55千米/时的速度行进。问:甲、乙两班谁将获胜?

解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

17 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

18 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

(52+70)×18=2196(米)。

19 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

20 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

21 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的15倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+15)=44(时)=4时24分,所以相遇时刻是9∶24。

22 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11

23 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

解:甲乙速度差为10/5=2

速度比为(4+2):4=6:4

所以甲每秒跑6米,乙每秒跑4米。

24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:

(1) A, B相距多少米?

(2)如果丙从A跑到B用24秒,那么甲的速度是多少?

解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度

25 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?

解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程

10(a-b)=20(a-3b),

解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

26 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?

解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

27 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:

(1)火车速度是甲的速度的几倍?

(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?

解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;

(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

28 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。求甲、乙两地的距离。

29 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天?

解:甲需要(73-5)/2=8(天)

乙需要(67-25)/2=16(天)

30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?

31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。这本书共有多少页?

解:开始读了3/7 后来总共读了5/8

33/(5/8-3/7)=33/(11/56)=563=168页

32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成?

解:甲做2小时的等于乙做6小时的,所以乙单独做需要

63+12=30(小时) 甲单独做需要10小时

因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

33 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个?

解:甲和乙的工作时间比为4:5,所以工作效率比是5:4

工作量的比也5:4,把甲做的看作5份,乙做的看作4份

那么甲比乙多1份,就是20个。因此9份就是180个

所以这批零件共180个

34挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着

解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5

所以乙挖4天能挖2/5

因此乙1天能挖1/10,即乙单独挖需要10天。

甲单独挖需要1/(1/6-1/10)=15天。

35 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?

36 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成。现在只能增加2个人,那么完成这项工程需要多少天?

解:将1人1天完成的工作量称为1份。调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。调来2人需100÷(2+2)=25(天)。

37

解:三角形AOB和三角形DOC的面积和为长方形的50%

所以三角形AOB占32%

16÷32%=50

38

解:1/21/3=1/6

所以三角形ABC的面积是三角形AED面积的6倍。

39下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等。问:哪几个图中的阴影部分与图(1)阴影部分面积相等?

解:(2) (4) (7) (8) (9)

40 观察下列各串数的规律,在括号中填入适当的数

2,5,11,23,47,( ),……

解:括号内填95

规律:数列里地每一项都等于它前面一项的2倍减1

41 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?

解:1000-1=999

997-995=992

每次减少7,999/7=142……5

所以下面减上面最小是5

1333-1=1332 1332/7=190……2

所以上面减下面最小是2

因此这个差最小是2。

42 如果四位数6□□8能被73整除,那么商是多少?

解:估计这个商的十位应该是8,看个位可以知道是6

因此这个商是86。

43 求各位数字都是 7,并能被63整除的最小自然数。

解:63=79

所以至少要9个7才行(因为各位数字之和必须是9的倍数)

44 1×2×3×…×15能否被 9009整除?

解:能。

将9009分解质因数

9009=3371113

45 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?

解:不能。因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。

46 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。

解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大

47100以内约数个数最多的自然数有五个,它们分别是几?

解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;

如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;

如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数。

所以100以内约数最多的自然数是60,72,84,90和96。

48 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。

解:6,10,15

49 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?

解:42份;每份有苹果8个,桔子6个,梨5个。

50 三个连续自然数的最小公倍数是168,求这三个数。

解:6,7,8。 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。

51 一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?

解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。

52 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?

解:爷爷70岁,小明10岁。提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。(60岁)

53 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

解:11,13,17,23,37,47。

54 在放暑假的8月份,小明有五天是在姥姥家过的。这五天的日期除一天是合数外,其它四天的日期都是质数。这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。问:小明是哪几天在姥姥家住的?

解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1)。因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。

55 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

解:3,74;18,37。

提示:三个数字相同的三位数必有因数111。因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。

56 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。问:长度是1厘米的短木棍有多少根?

解:因为100能被5整除,所以可以看做都是自左向右染色。因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现。一个周期的情况如下图所示:

由上图知道,一个周期内有2根1厘米的木棍。所以三个周期即90厘米有6根,最后10厘米有1根,共7根。

57 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。问:商品的购入价是多少元?

解:8000元。按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。

58 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙两桶哪桶水多?

解:乙桶多。

59 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?

解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),

只做对一道题的人数为25-11-1=13(人)。

60 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:最多有几人获奖?最少有几人获奖?

解:共有13人次获奖,故最多有13人获奖。又每人最多参加两项,即最多获两项奖,因此最少有7人获奖。

61 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?

解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36)。所求自然数共有 1000-(31+10)+3=962(个)。

62 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?

解:455=100个

63 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?

解:666=216种

64 已知15120=24×33×5×7,问:15120共有多少个不同的约数?

解: 15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个)。

65 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?

解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

66 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法。)

解:80种。提示:从A到B共有10条不同的路线,每条路线长5个线段。每次走一个或两个线段,每条路线有8种走法,所以不同走法共有 8×10=80(种)。

67有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?

解:543=60种

68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?

解:543=60种

69 恰有两位数字相同的三位数共有多少个?

解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个)。

70 从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?

解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法。共有 3×3×4!=216(个)。

71 左下图中有多少个锐角?

解:C(11,2)=55个

72 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?

解:c(10,2)-10=35种

73 一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?

解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份)。21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周)。

74 有一水池,池底有泉水不断涌出。要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?

解:将1台抽水机1时抽的水当做1份。泉水每时涌出量为

(8×12-10×8)÷(12-8)=4(份)。

水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时)。

75 规定ab=(b+a)×b,求(23)5。

解:23=(3+2)3=15

155=(15+5)5=100

76 1!+2!+3!+…+99!的个位数字是多少?

解:1!+2!+3!+4!=1+2+6+24=33

从5!开始,以后每一项的个位数字都是0

所以1!+2!+3!+…+99!的个位数字是3。

77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。在200个信号中至少有多少个信号完全相同?

解:444=64

200÷64=3……8

所以至少有4个信号完全相同。

77 (2)在今年入学的一年级新生中有 370多人是在同一年出生的。试说明:他们中至少有2个人是在同一天出生的。

解:因为一年最多有366天,看做366个抽屉

因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的。

78 从前11个自然数中任意取出6个,求证:其中必有2个数互质。

证明:把前11个自然数分成如下5组

(1,2,3)(4,5)(6,7)(8,9)(10,11)

6个数放入5组必然有2个数在同一组,那么这两个数必然互质。

79 小明去爬山,上山时每时行25千米,下山时每时行4千米,往返共用39时。小明往返一趟共行了多少千米?

80 长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?

解:800千米。 提示:从A到B与从B到A的速度比是5∶4,从A到B用

81 请在下式中插入一个数码,使之成为等式:

1×11×111= 111111

解答:9111111=111111

82.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。问:乙数是多少?

解:设乙数是x,那么甲数就是5x+1

丙数是5(5x+1)+1=25x+6

因此x+5x+1+25x+6=100

31x=93 x=3

所以乙数是3

83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方

解:12345654321=111111的平方

1+2+3+4+5+6+5+4+3+2+1=36=6的平方

所以原式=666666的平方。

84某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。问:这个剧院一共有多少个座位?

解:第一排有70-242=22个座位

所以总座位数是(22+70)25/2 =1150

85 某城市举行小学生数学竞赛,试卷共有20道题。评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分。问:所有参赛学生的得分总和是奇数还是偶数?为什么?

解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数。每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数。

86 可以分解为三个质数之积的最小的三位数是几?

解:102=2317

87 两个质数的和是39,求这两个质数的积。

解:注意到奇偶性可以知道这2个质数分别是2和37

它们的乘积是237=74

88 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张。甲说:“我的三张牌的积是48。”乙说:“我的三张牌的和是15。”丙说:“我的三张牌的积是63。”问:他们各拿了哪三张牌?

解:63=719 所以丙拿的1,7,9

48=238 所以甲拿的2,3,8

4+5+6=15 因此乙拿的是4,5,6

89 四个连续自然数的积是3024,求这四个数。

解:考虑末尾数字,1234末尾是4

6789末尾也是4

其他情况下末尾都是0

11121314=24024太大

6789=3024刚好

所以这4个数是6,7,8,9

90 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除。

解:该数形如ABCABC=ABC1001

1001=71113

所以这个六位数一定能被7,11,13整除。

91.在1~100中,所有的只有3个约数的自然数的和是多少?

解:4+9+25+49=87

92 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?

解:[60,9]=180

180/60=3

下次是下午3点钟。

93 有一个数除以3余2,除以4余1。问:此数除以12余几?

解:除以3余2的数是2,5,8,11,14。。。。。。

除以4余1的数是1,5,9,。。。。。。

所以此数除以12余5

94 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?

解:16=3+3+3+3+2+2

乘积是333322=324

95 小明按1~ 3报数,小红按1~ 4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?

解:每12次作为一个周期

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 4 1 2 3 4 1 2 3 4

每个周期两人有3次报的数一样

100=128+4

所以两个人有83+3=27次报的数相同。

96 某自然数加10或减10皆为平方数,求这个自然数。

解:设这个数是x

x+10=m^2

x-10=n^2

m^2-n^2=20 (m+n)(m-n)=20

m=6,n=4

所以x=6^2-10=26

97 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。

解:120秒行驶的距离是桥长+车长

80秒行驶的距离是桥长-车长

所以80(1000+车长)=120(1000-车长)

车长=200米

火车的速度是10米/秒

98 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?

解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟

99 甲、乙比赛乒乓球,五局三胜。已知甲胜了第一局,并最终获胜。问:各局的胜负情况有多少种可能?

解:甲 甲 甲

甲 甲 乙 甲

甲 甲 乙 乙 甲

甲 乙 甲 甲

甲 乙 甲 乙 甲

甲 乙 乙 甲 甲

经枚举发现共有6种可能。

100 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个。问:甲每时加工多少个零件?

解:甲乙二人一小时共可加工零件27个

设甲每小时加工x个,那么乙每小时加工27-x个

根据条件得3x=4(27-x)+4

7x=112 x=16

答:甲每小时加工零件16个。

我可是手打的要采纳哦

海底两万里》试题(含答案)

1 (尼摩船长)是一名(反抗压迫)的战士,这一形象正是凡尔纳(反对殖民主义、反对奴隶制和压迫者的进步思想)的体现。

2 《海底两万里》的作者是(法)国小说家(儒勒·凡尔纳)。

3 尼摩船长会说四种语言,分别是(法语、德语、英语、拉丁语)。

4 作者儒勒·凡尔纳是现代科幻小说的重要奠基人。他被公认为为(“现代科学幻想小说的之父”)。

5 潜艇上的人睡的床是用(大叶藻)做的,穿的衣服是用(贝壳类的足丝)做的,用来写字的笔是用(鲸的触须)做的

6 潜艇上墨水是用(墨鱼或乌贼的分泌物)做的,布是用(海洋纤维)做的。

7 鹦鹉螺号最后的结局是(卷入漩涡中)。

8 阿龙纳斯的仆人叫(康塞尔),故事中,阿龙纳斯曾经在法国出版过的一部书叫(《海底的秘密》),“鱼叉手之王”指的是(尼德·兰)。

9 尼摩船长在海底用(鲸鱼骨)做的笔写字。

一、 选择题

1鹦鹉螺号最快时速是(A)海里。

A、50 B、500 C、5000

2( B)是加拿大人,勇敢机智,捕鲸技艺天下无双。

A康塞尔B尼德C阿尤纳斯

3尼摩船长认为红海和地中海中间会有一个阿拉伯隧道,他的理由是(D)

A别人从阿拉伯隧道走过,然后告诉了尼摩船长

B纯粹是尼摩船长的猜测

C尼摩船长偶然发现的

D尼摩船长根据一些生物学现象进行了推理,继而进行了试验,证明了隧道的存在

4鹦鹉螺号困在了冰隧道里,海水在不断结成冰,很快,大家就要被压死,为了防止水的冻结,船员们采取了一个办法,那就是(B)

A很快凿开了冰层

B往冰上浇开水,从而降低结冰的速度,为走出困境赢得了时间

C用炸药炸开冰山

D鹦鹉螺号上带有特殊的钻机,钻开了冰山,走出了困境

5鹦鹉螺号(C),所以根本不怕野人的攻击。A武器装备精良B外壳坚不可摧

C入口的扶梯上通有高压电D自身带有防护罩

1.请简述《海底两万里》的内容。

答:主要讲述了1866年,有人以为在海上见到了一条独角鲸,法国生物学家阿龙纳斯最后发现那是一艘名为诺蒂留斯号的潜艇,并且带着仆人康塞尔和一个捕鲸手,跟随尼摩船长乘坐这艘潜艇在海底作了两万里的环球探险旅行。

2、读完这部小说,你有什么感受和启示?

答:在我们的地球上,还有很多未知的,也可能是即将发生的事情,需要人们以一种求知的态度去看待。

3、请简析尼摩船长的形象。

答:尼摩船长是一位不明国籍的神秘人物,是杰出的建筑师、工程师、航海家和学者。他身材高大,目光犀利,有着哲人般的沉静,蔑视人类社会的法规。他勇敢刚毅,有着超人的智慧,乐观自信,富有同情心,崇尚自由独立,是一名富有正义感、反对压迫的战士。

1、儒勒·凡尔纳是法国(国家)科幻小说家,他是现代科幻小说的重要奠基人。他被公认为为---“现代科学幻想小说的之父-”。

2、《海底两万里》是凡尔纳的的三部曲之二,其余两部是:第一部是--《格兰特船长的儿女》--,第三部是--《神秘岛》--。

3、凡尔纳的作品形象夸张地反映了19世纪-“机器时代”人们征服自然,改造世界的意志和幻想,并成为西方现代日本科幻小说的先河,我国的科幻小说大多也受到他作品的启发和影响。

4、《海底两万里》主要讲述诺第留斯号(“鹦鹉螺号”)潜艇的故事。凡尔纳的小说之所以动人,原因在于构思巧妙、情节惊险,还在于它们是科学和幻想巧妙结合的成果。

5、《海底两万里》书中人物寥寥,有名有姓的只有四个半即:船长(尼摩)、自然科学家(阿龙纳斯)、仆人(康塞尔)、捕鲸手(尼德•兰),“亚伯拉罕•林肯”号驱逐舰舰长(法拉格特),只在小说开头部分昙花一现,姑且算半个;

6、《海底两万里》中诺第留斯号潜艇是船长尼莫在大洋中的一座荒岛上秘密建造的,船身坚固,利用海洋能源发电。

7、《海底两万里》中人物在印度洋的珠场和鲨鱼展开过搏斗,捕鲸手尼德·兰手刃了一条凶恶的巨鲨;他们在红海里追捕过一条濒于绝种的儒艮(gěn),它肉当晚就被端上了餐桌;

8、《海底两万里》一书,情节跌宕起伏,悬念丛生,具有强烈的可读性,而且书中还包含了大量地理、历史、生物、物理、地质、气象方面的知识,小读者在阅读引人入胜的历险故事的同时,还能够轻松地获取科学知识。

9、《海底两万里》中尼摩船长说了一句话来形容人类的进步:(“人类进步的实在是太慢了”)

10、你还知道作者的那些作品?写出其中几部:《气球上的五星期》、《八十天环游地球》、《机器岛》、《大木筏》、《隐身新娘》

11、故事情节:《海底两万里》主要讲述诺第留斯号的故事。1866年有人以为在海上看到了一条独角鲸,法国生物学家阿龙纳斯最后发现那是一艘名为诺第留斯号的潜艇,并且带着仆人康塞尔和一个捕鲸手,跟随乘坐这艘潜艇做了海底两万里的环球旅行。

12、主要人物:尼摩是个不明国籍的神秘人物,他在荒岛上秘密建造的这艘潜艇不仅异常坚固,而且结构巧妙,能够利用海洋提供能源。他与大陆保持联系,用海底沉船里的千百万金银来支援陆地上人们的正义斗争。

13、《海底两万里》描绘的是人们在大海里的种种惊险奇遇美妙壮观的海底世界充满了异国情调和浓厚的浪漫主义色彩,体现了人类自古以来渴望上天入地、自由翱翔的梦想

14、凡尔纳的小说得以广为流传,还因为他具有社会正义感和崇高的人道主义精神。他笔下的人物都是品质高尚、献身科学的人,是英勇顽强、不畏艰险的人。像尼摩船长等反抗压迫的战士的形象,正是他反对殖民主义,反对奴隶制和压迫者的进步思想的体现。

二、简答:1、尼摩船长和阿龙纳斯在海底环球探险旅行时,经历了许多险情,请概括出3次险情。

答:搁浅、土人围攻、同鲨鱼搏斗、冰山封路、章鱼袭击

2、请说出尼摩船长与阿龙纳斯在海底环球旅行的路线。

答:从太平洋出发,经过珊瑚岛、印度洋、红海、地中海、进入大西洋、南极

3、简述《海底两万里》内容。

答:故事发生在1866年,海洋中出现了一种不知名的怪物,阿龙纳克斯教授作为一名海洋动物的专家,随远征队去剿灭怪物,不料却掉入海中,被怪物一艘名为“鹦鹉螺”号的潜艇所救。于是,他和神奇的尼摩船长开始了一段惊险、神奇的海底旅行。他们登上从未有人到达过的南极;目睹了海底火山喷发的壮观景象及凄惨的海底沉船;领略了美丽而又充满危险的海底世界

4、你认为尼摩船长是一个怎么样的人。

答:尼摩船长逃避人类,蛰居海底,而又隐隐约约和陆地上的某些人有一种特殊联系。他富有同情心,性格阴郁、知识渊博、带有浪漫、神秘色彩,非常吸引人的人物。

5、《海底两万里》是一部纯虚构的科幻小说,你觉得这部书最吸引你的地方是什么?书中哪些想像事物如今已经变成现实,通过这些事例你能看出科幻小说与科技发展的某些关系吗?

答:①示例:海底世界充满异国风情和浓厚的浪漫主义色彩。②海底潜艇、人类登月、太空飞行都已成为现实。③科幻小说往往也是科学研究基础上的的推理和预言。曲折的情节和对海洋知识的介绍,潜水艇、潜水服、电的使用等等在一定程度上促进科学的发展。

以上就是关于50道小学五年级奥数题(有答案,行程问题)全部的内容,包括:50道小学五年级奥数题(有答案,行程问题)、数学奥数题、海底两万里 选择10道 填空30 带答案 谢谢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

50道小学五年级奥数题(有答案,行程问题)由网友发布在腾赚财富网,更多内容请关注我们,也可查看其他相关内容。

标签:

Copyright ©  2015-2022 南非产业网版权所有  备案号:沪ICP备2022005074号-13   联系邮箱:58 55 97 3@qq.com